Distributive Lattices, Bipartite Graphs and Alexander Duality
نویسنده
چکیده
A certain squarefree monomial ideal HP arising from a finite partially ordered set P will be studied from viewpoints of both commutative algbera and combinatorics. First, it is proved that the defining ideal of the Rees algebra of HP possesses a quadratic Gröbner basis. Thus in particular all powers of HP have linear resolutions. Second, the minimal free graded resolution of HP will be constructed explicitly and a combinatorial formula to compute the Betti numbers of HP will be presented. Third, by using the fact that the Alexander dual of the simplicial complex whose Stanley–Reisner ideal coincides with HP is Cohen–Macaulay, all the Cohen–Macaulay bipartite graphs will be classified.
منابع مشابه
. A C ] 1 7 Ju l 2 00 3 DISTRIBUTIVE LATTICES , BIPARTITE GRAPHS AND ALEXANDER DUALITY
A certain squarefree monomial ideal HP arising from a finite partially ordered set P will be studied from viewpoints of both commutative algebra and combinatorics. First, it is proved that the defining ideal of the Rees algebra of HP possesses a quadratic Gröbner basis. Thus in particular all powers of HP have linear resolutions. Second, the minimal free graded resolution of HP will be construc...
متن کاملFUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملA duality between fuzzy domains and strongly completely distributive $L$-ordered sets
The aim of this paper is to establish a fuzzy version of the dualitybetween domains and completely distributive lattices. All values aretaken in a fixed frame $L$. A definition of (strongly) completelydistributive $L$-ordered sets is introduced. The main result inthis paper is that the category of fuzzy domains is dually equivalentto the category of strongly completely distributive $L$-ordereds...
متن کاملDistributive Lattices from Graphs
Several instances of distributive lattices on graph structures are known. This includes c-orientations (Propp), α-orientations of planar graphs (Felsner/de Mendez) planar flows (Khuller, Naor and Klein) as well as some more special instances, e.g., spanning trees of a planar graph, matchings of planar bipartite graphs and Schnyder woods. We provide a characterization of upper locally distributi...
متن کامل